Search results

1 – 3 of 3
Article
Publication date: 29 July 2014

S. Udhayakumar, P.V. Mohanram, S. Yeshwanth, Manas Ranjan Biswal and A. Sabareeswaran

The purpose of this paper is to discuss a linear vibratory part feeder for handling brake liners, typical sector-shaped components. Part feeders have been used in the industries…

Abstract

Purpose

The purpose of this paper is to discuss a linear vibratory part feeder for handling brake liners, typical sector-shaped components. Part feeders have been used in the industries for a long time to present the parts in a desired orientation. Berretty et al. (1999) discussed a class of mechanical filters that are capable of removing polygonal sections from the track of the feeder which are referred to as traps. The traps eliminate or reorient the parts until they reach the final desired orientation. A part feeder was developed using traps, to reorient the sector-shaped part to desired orientation. The desired orientation was the most probable natural resting orientation. The trap was mounted on a linear vibratory feeder. The adaptive part feeder developed was capable of identifying the size of the incoming part and adjust the trap to accommodate that. This set-up eliminates the use of different traps for different-sized sector-shaped parts and wastage of productive time in changing the traps for different sizes. A regression model was developed to predict the conveying velocity of part on the feeder.

Design/methodology/approach

A part feeder was developed using traps, to reorient the sector-shaped part to desired orientation. Acrylic material was found to be suitable for trap compared to aluminium. The adaptive part feeder developed was capable of identifying the size of the incoming part using proximity sensors. Depending on the size of the incoming part, the track width was adjusted dynamically with the help of a stepper motor, rack and pinion arrangement. A regression model was developed to predict the conveying velocity.

Findings

Typical brake liners in the size range of 40-60 mm (radius) were considered for developing the adaptive part feeder. Based on performance studies, the acrylic trap was found better than aluminium traps. The appropriate frequency and amplitude of vibration for maximum conveying velocity of the adaptive part feeder were found experimentally. Regression equation was developed to determine the conveying velocity based on input frequency and amplitude. The regression results were found to be in close agreement with the experimental results.

Research limitations/implications

The developed part feeder is suitable for handling sector-shaped parts only.

Originality/value

This paper demonstrates an inexpensive adaptive part feeding device for handling sector-shaped parts which can be extended for handling other asymmetric parts also.

Details

Assembly Automation, vol. 34 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 5 May 2020

Gayathri Mani, Malathy Chidambaranathan and Snehit Sagi

In India, agriculture is considered as the major source of income for a major sector of people. Our country's GDP (Gross Domestic Product) can increase only if we focus on…

Abstract

Purpose

In India, agriculture is considered as the major source of income for a major sector of people. Our country's GDP (Gross Domestic Product) can increase only if we focus on agriculture and its growth toward global economy. There have been several attempts to improve the agricultural sector since decades.

Design/methodology/approach

This work describes about the design of a device which continuously monitors the plant growth and sends the data to a centralized database, where data is dynamically analyzed based on base references using various machine learning algorithms like regression, gradient descent, clustering etc.

Findings

This paper aims at analyzing the plant growth in of our country and focuses on the improvement of plant growth based on factors such as temperature, air moisture, radiant energy, carbon dioxide levels, soil pH& temperature through the design of a device.

Originality/value

It is anticipated to provide a solution by analyzing the plant growth percentage in different regions over a period of time. Based on the inferences, we will be able to suggest an optimum environment for the plant species to grow best. Various sensors like temperature and humidity sensors, light sensors and pH electrodes can be used in collecting data from the plant environment.

Details

International Journal of Intelligent Unmanned Systems, vol. 8 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 23 September 2020

Ramachandran T., Surendarnath S. and Dharmalingam R.

Fixture layout design is concerned with immobilization of the workpiece (engine mount bracket) during machining such that the workpiece elastic deformation is reduced. The fixture…

Abstract

Purpose

Fixture layout design is concerned with immobilization of the workpiece (engine mount bracket) during machining such that the workpiece elastic deformation is reduced. The fixture holds the workpiece through the positioning of fixturing elements that causes the workpiece elastic deformation, in turn, leads to the form and dimensional errors and increased machining cost. The fixture layout has the major impact on the machining accuracy and is the function of the fixturing position. The position of the fixturing elements, key aspects, needed to be optimized to reduce the workpiece elastic deformation. The purpose of this study is to evaluate the optimized fixture layout for the machining of the engine mount bracket.

Design Methodology Approach

In this research work, using the finite element method (FEM), a model is developed in the MATLAB for the fixture-workpiece system so that the workpiece elastic deformation is determined. The artificial neural network (ANN) is used to develop an empirical model. The results of deformation obtained for different fixture layouts from FEM are used to train the ANN and finally the empirical model is developed. The model capable of predicting the deformation is embedded to the evolutionary optimization techniques, capable of finding local and global optima, to optimize the fixture layouts and to find the robust one.

Findings

For efficient optimization of the fixture layout parameters to obtain the least possible deformation, ant colony algorithm (ACA) and artificial bee colony algorithm (ABCA) are used and the results of deformation obtained from both the optimization techniques are compared for the best results.

Research Limitations Implications

A MATLAB-based FEM technique is able to provide solutions when the repeated modeling and simulations required i.e. modeling of fixture layouts (500 layouts) for every variation in the parameters requires individual modeling and simulation for the output requirement in any FEM-based software’s (ANSYS, ABACUS). This difficulty is reduced in this research. So that the MATLAB-based FEM modeling, simulation and optimization is carried out to determine the solutions for the optimized fixture layout to reach least deformation.

Practical Implications

Many a time the practicability of the machining/mechanical operations are difficult to perform costly and time-consuming when more number of experimentations are required. To sort out the difficulties the computer-based automated solution techniques are highly required. Such kind of research over this study is presented for the readers.

Originality Value

A MATLAB-based FEM modeling and simulation technique is used to obtain the fixture layout optimization. ANN-based empirical model is developed for the fixture layout deformation that creates a hypothesis for the fixture layout system. ACA and ABCA are used for optimizing the fixture layout parameters and are compared for the best algorithm suited for the fixture layout system.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 3 of 3